1981 297

Reaction of Bidentate Isonitrile Ligands with Iron Carbonyls

By James A. S. Howell * and Anthony J. Rowan, Department of Chemistry, University of Keele, Keele, Staffordshire ST5 5BG

Reaction of the bidentate isonitriles $CN(CH_2)_nNC$ (n=2,3,4, or 6) with $[Fe_2(cp)_2(CO)_4]$ ($cp=\eta$ -cyclopentadienyl) yields exclusively $[\{Fe_2(cp)_2(CO)_3\}_2\{CN(CH_2)_nNC\}]$ derivatives which are fluxional in solution and exist in three isomeric forms (bridged—bridged, bridged—terminal, and terminal—terminal with respect to the bonding mode of the bidentate isonitrile). The proportion of the isomers containing terminally bound isonitrile increases with the length of the alkyl chain. The complexes may be protonated to yield $[\{Fe_2(cp)_2(CO)_3\}_2\{CN(H)(CH_2)_n(H)NC\}][PF_6]_2$ salts (n=2 or 6) and may be cleaved with I_2 to give $[Fe(cp)(CO)_2]$ and $[\{Fe(cp)(CO)I\}_2-\{CN(CH_2)_nNC\}]$ (n=2 or 6). Reaction of $CN(CH_2)_nNC$ (n=2 or 6) with $[Fe_2(CO)_9]$ or $[Fe_3(CO)_{12}]$ yields exclusively $[\{Fe(CO)_4\}_2\{CN(CH_2)_nNC\}]$ derivatives.

During the past decade it has become increasingly apparent that isonitriles may form one of the most versatile classes of ligand available to the transition-metal chemist. Despite the large number of studies on complexes of bi- and poly-dentate ligands of Groups 5 and 6, the chemistry of bi- and poly-dentate isonitriles remains almost unexplored, although the recent work of Gray and co-workers 1 and others 2 on the preparation and reactivity of $[Rh_2\{CN(CH_2)_nNC\}_4]^{2+}$ salts (n=3-8)

= 2, 3, 4, or 6). Yields are not as satisfactory as those obtained in the preparation of unidentate ligand derivatives $[Fe_2(cp)_2(CO)_3(CNR)]$ and the formation of amounts of insoluble polymeric material is undoubtedly responsible. No products were isolated which involved chelation within a single Fe_2 moiety.

As isonitriles are known to function as both bridging and terminal ligands, the three isomeric structures (A)—(C) are possible. In the drawing, the cp groups are

indicates the possibility of a rich and interesting chemistry. As part of our studies ³ of the reactions of isonitriles with transition-metal carbonyl clusters, we report here results on the reaction of the series CN- $(CH_2)_nNC$ (n=2, 3, 4, or 6) with the iron carbonyls $[Fe_2(cp)_2(CO)_4]$ ($cp=\eta$ -cyclopentadienyl), $[Fe_2(CO)_9]$, and $[Fe_3(CO)_{12}]$.

DISCUSSION

We have found the most satisfactory synthesis of the $CN(CH_2)_nNC$ series (1a—d; n=2,3,4, or 6) to involve the elimination of water from the disubstituted formamide $OHCHN(CH_2)_nNHCHO$ using phosgene, $COCl_2$, in the presence of triethylamine.⁴

Reaction of (1a)—(1d) with $[Fe_2(cp)_2(CO)_4]$ in benzene at room temperature, followed by chromatography, yields exclusively red-purple crystalline complexes which analytical (Table 1) and other data show to have the composition $[\{Fe_2(cp)_2(CO)_3\}_2\{CN(CH_2)_nNC\}]$ (2a—d; n

represented as having a *cis* configuration, although the possibility of *cis-trans* isomerism of the $Fe_2(cp)_2(CO)_3$ moieties raises the total number of isomers to ten [three each for (A) and (C) and four for (B)]. In common with work on the monosubstituted $[Fe_2(cp)_2(CO)_3(CNR)]$ complexes, it does not appear possible to differentiate between *cis* and *trans* isomers by n.m.r. spectroscopy (if indeed, more than one isomer is present), and the discussion which follows is in terms of the structural isomers (A)—(C) only.

Carbon-13 and ¹H n.m.r. studies (Tables 2 and 3) show that all three isomers may be present, with the proportions dependent on the alkyl chain length, *n*, and that the molecules are fluxional in solution, undergoing isomer interchange accompanied by both CO and CNCH₂ bridge-terminal exchange, and cyclopentadienyl site exchange. Thus, the limiting low-temperature proton spectrum of (2a) (Figure 1) shows the expected four cyclopentadienyl signals due to a mixture of

isomers (A) and (B) in the ratio 1:4. On the basis of intensities and characteristic trends in chemical shifts,³ the resonance at δ 4.88 may be assigned to the equivalent cyclopentadienyl ligands of (A) while the three other

TABLE 1
Analytical data (%)

		Found		Calc.			
Complex	\overline{c}	H	N	\overline{c}	H	N	
(2a)	48.9	3.30	4.10	49.2	3.30	3.85	
(2b)	49.8	3.45	4.30	49.9	3.50	3.75	
(2c)	50.3	3.60	3.90	50.5	3.70	3.70	
(2ď)	52.1	4.25	3.75	51.8	4.05	3.55	
(3a)	35.6	2.55	3.50	35.2	2.55	2.75	
(3b)	37.3	3.15	2.80	37.8	3.15	2.60	
(4a)	30.6	2.10	4.75	30.4	2.20	4.45	
(4b)	34.8	3.15	3.60	34.9	3.20	4.05	
(5a)	34.9	1.00	7.65	34.6	0.95	6.75	
(5b)	41.3	2.60	6.55	40.7	2.55	5.95	

peaks at δ 4.86, 4.70, and 4.59 in the ratio of 2:1:1 may be assigned to (B). In the CH₂ region a singlet is observed at δ 4.34 due to (A), while the multiplet at δ 3.71 may be assigned to (B), which may be regarded as an unsymmetrical 1,2-disubstituted ethane. Such compounds are known to exhibit AA'BB' spectra,⁵ and the experimental spectrum may be simulated exactly using values of $\delta_A = 3.67$ and $\delta_B = 3.78$, with geminal and vicinal coupling constants of -14 and 6 Hz respectively. A rather large natural linewidth of ca. 3 Hz must be assumed; broadness of the alkyl resonances is a feature characteristic of the other complexes (2b) --(2d) and may be due to incompletely resolved resonances from cis and trans isomers.

Crystallographic studies have shown that a bridging

the n.m.r. time scale at -20 °C. On cooling to -80 °C, considerable broadening of these resonances is observed. This implies a slowing of the inversion at this temperature, although spectra at lower temperatures could not be obtained due to solubility problems. Analogous spectra of the bridged isonitrile isomer in the series $[\text{Fe}_2(\text{cp})_2(\text{CO})_3(\text{CNR})]$ (R = alkyl or phenyl) show no temperature dependence down to -105 °C,3 indicating

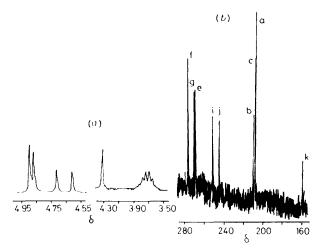


FIGURE 1 Proton (a) and ¹³C (b) n.m.r. spectra of (2a) in CD₂Cl₂ at -20 °C

that the bulk of the substituent on a bridging isonitrile is perhaps an important factor in determining the barrier to nitrogen inversion.

On warming to room temperature, both the cyclo-

Table 2
Proton n.m.r. spectra ^a

	1.1	oton n.m.t. spectra "	
Complex	cp	Other	Ratio (A): (B): (C)
(2a) b	$ \begin{array}{c} 4.88 \text{ (A)} \\ 4.86 \\ 4.70 \\ 4.59 \end{array} $ (B)	4.34 (s) CH ₂ (A) 3.71 (m) CH ₂ (B)	1:4:0
(2b) b	4.86 (B) 4.70 4.59 4.59 4.82 (B)	3.81 (t, $J = 5.7$) $CH_2(B,b)$ 3.42 (t, $J = 5.8$) CH_2 (B,te) 3.19 (t, $J = 7.0$) $CH_2(C)$ 0.83—1.80 (m) β - $CH_2(B + C)$	δ:4:1
(2c) *	4.83 (B) 4.69 4.58 } (B + C)	3.84 (t,br) CH ₂ (B,b) 3.48 (t,br) CH ₂ (B,te) 3.18 (t,br) CH ₂ (C) 1.16—1.80 (m) β-CH ₂ (B + C)	δ:1:2
(2d) b	$egin{array}{ll} 4.83 & (B) \\ 4.69 \\ 4.58 \end{array} \Big\} (B+C)$	3.87 (t, $J = 7.4$) $CH_2(B,b)$ 3.35 (t,br) $CH_2(B,te)$ 3.19 (t, $J = 5.9$) $CH_2(C)$ 0.53—1.74 (m) β , γ - $CH_2(B + C)$	δ:1:7
(4a) °	$\left. \begin{array}{c} \textbf{4.83} \\ \textbf{4.81} \end{array} \right\}$	4.10 (s) CH ₂	
(4b) c	4.73	3.77 (t, $J = 6.2$) α -CH ₂ 1.41—1.99 (m) β , γ -CH ₂	

⁶ Chemical shifts in p.p.m. from SiMe₄, J values in Hz; s = singlet, t = triplet, m = multiplet, t = terminal, b = bridging. ⁶ In CD₂Cl₂ solution at -40 °C. ⁶ In CDCl₃ solution.

isonitrile ligand is not linear, but generally has an R-N-C angle of ca. 130°. The equivalence of the cyclopenta-dienyl ligands of isomer (A) and those of the Fe₂(cp)₂-(CO)₃ residue of isomer (B) containing the bridging isonitrile group implies that nitrogen inversion is rapid on

pentadienyl and CH_2 resonances broaden, and in $[^2H_8]$ toluene a limiting high-temperature spectrum consisting of single cyclopentadienyl and CH_2 resonances can be obtained at 80 °C. This demonstrates the presence of both (A) \Longrightarrow (B) exchange and cyclopentadienyl site

exchange in isomer (B). In terms of the Adams-Cotton mechanism, these processes are related. Thus, independent bridge-terminal isonitrile exchange at each $\text{Fe}_2(\text{cp})_2(\text{CO})_3$ moiety results in (A) \longrightarrow (B) \longrightarrow (C)

CO and CN region shows the nine resonances expected for a mixture of isomers (A) and (B). The assignment shown is made on the basis of intensity and on chemical shifts found for the related $[Fe_2(cp)_2(CO)_3(CNR)]$ series.³ Some

							TA	BLE 3							
						Carl	oon-13 1	n.m.r. s	pectra a	:					
		C	O_{te}			C	$O_{\mathbf{b}}$		C	N _b	CI	N _{te}			
Complex	a	b	С	d	e	f	g	h	i	j	k	l	cp	60.0	Other
(2a) b	209.9	212.1	210.4		271.1	278.6	272.3		253.6	246.7	160.8		$86.6 \ 86.3 \ 85.5$	57.5	$CH_2(A)$ $CH_2(B,b)$ $CH_2(B,te)$
(2b) b		209.5	209.5	211.7		277.6	271.6	278.3		247.7	161.0	158.4	$86.2 \\ 85.9$	53.9	$^{\circ}\mathrm{CH}_{2}(\mathrm{B,b})$
													85.1	$\frac{39.7}{29.2}$	$ \begin{array}{c} \operatorname{CH}_{2}(B, \operatorname{te}) \\ \operatorname{CH}_{2}(C) \\ \operatorname{CH}_{2}(B) \\ \operatorname{CH}_{2}(C) \end{array} \right\} \beta $
(2c) b,d				211.0				278.5					$86.3 \\ 86.1 \\ 85.3$		α -CH ₂ (C) β -CH ₂ (C)
(2d) b,e				211.6				278.7				158.4	85.0 85.8	27.6	α -CH $_2$ (C) β -CH $_2$ (C) γ -CH $_2$ (C)
(3a) ^f (3b) ^f	•		207.5 207.9 208.2				254.9 254.9			320.1 319.6			89.6 89.7 90.3	$59.9 \\ 28.9$	CH ₂ α-CH ₂ β-CH ₂ γ-CH ₂
(5a) b (5b) b			210.9 212.3									160.8 154.4		45.6 45.6 28.4	CH ₂ α-CH ₂ β-CH ₂

^a Chemical shifts in p.p.m. from SiMe₄; b = bridging, te = terminal. ^b In $CH_2Cl_2-CD_2Cl_2$ solution; spectra of (2a)—(2d) at -30 °C. ^c Obscured by solvent peak. ^d Limited solubility; only carbonyl resonances of isomer (B) detectable. ^e Resonances of minor isomer (B) not detected. ^f In CH_3CN-CD_3CN solution.

exchange [although (C) is depopulated below the limits of observation for n=2], while it has been shown ^{3,6} that cyclopentadienyl site exchange in the terminally

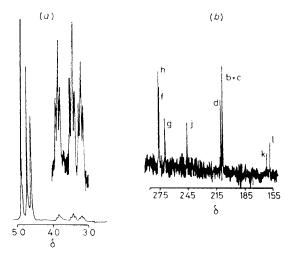


Figure 2 - Proton (a) and $^{13}{\rm C}$ (b) n.m.r. spectra of (2b) in CD2Cl2 at -20 °C

bound isomer is an automatic consequence of bridgeterminal isonitrile exchange.

The ¹³C spectrum of (2a) at -20 °C (Figure 1) in the

of the assignments are not unambiguous; thus, the two resonances at 271.1 and 272.3 p.p.m. may be reversed. Some overlap of resonances is observed in the cyclopentadienyl region, but the expected three ${\rm CH_2}$ resonances can be clearly seen (Table 3).

25.2 γ-CH₂

The spectra of $[{Fe_2(CP)_2(CO)_3}_2{CN(CH_2)_3NC}]$ (2b) indicate a mixture of isomers (B) and (C) (Figure 2). Only four of the five expected cyclopentadienyl absorptions can be seen, although a clear shoulder is observable on the resonance at δ 4.71. Thus, the resonance at δ 4.86 is assigned to the equivalent cyclopentadienyl groups of the Fe₂(cp)₂(CO)₃ residue of (B) containing a bridging isonitrile and the remaining four resonances are assigned to the terminal Fe₂(cp)₂(CO)₃ residue of (B) and isomer (C). In the \(\alpha\)-CH2 region the expected three triplets can be clearly seen. The ¹³C spectrum at -40 °C in the CO and CN region (Figure 2) shows eight of the nine resonances expected. The most probable assignments shown are based on intensity and chemical shift; in particular, the intensity of the resonance at 209.5 p.p.m. indicates a coincidence of carbonyls (b) and (c). On warming to room temperature, both CO and CN resonances broaden, indicating both CO and CN bridge-terminal exchange. A high-temperature-limiting spectrum could not be obtained because of limited solubility in other solvents and slow decomposition at higher temperatures.

Spectra of (2c) and (2d) may be interpreted on the same basis (Tables 2 and 3) and clearly show a decrease in the amount of isomer (B) relative to (C).

Infrared spectra (Table 4) are also in accord with this

TABLE 4

		Infrared data	. (cm ⁻¹)	
Complex	$\mathrm{CN}_{\mathrm{te}}$	CO_{te}	CO_b	CN_b
(2a) *		1 990 (100) 6	1 790 (43)	1 706 (35)
		1 946 (65)	1 750 (59)	1 722 (31)
(2b) "		1 987 (100)		1 711 (52)
		1 967 (sh)	1 759 (100)	
		1 943 (97)		
(2c) "		1 987 (62)	1 783 (24)	1 711 (22)
		1 943 (80)	1 755 (100)	
(2d) a		1 984 (38)	1 779 (20)	1 715 (sh)
		1 947 (82)	1 755 (100)	
(3a) c		$2\ 015$	1 825	1 525
		1 990		
(3b) c		2 010	1 820	1.570
• /		1 980		
(4a) d	2149	1 980		
$(4b)^{-d}$	2 163	1 975		
$(5a)^{-d}$	2 171	2 060		
, ,		2 003		
		1 979		
$(5b)^{-d}$	2.175	2 057		
` '		1 995		
		1 969		

 a 10% CH₂Cl₂-CS₂ solution; CN_{te} obscured by solvent absorption but can be seen at $ca.~2~130~\rm cm^{-1}$ in CH₂Cl₂ solution. b Relative intensities in parentheses. c In Nujol mull. d In hexane solution.

interpretation. Thus, the band at ca. I 990 cm⁻¹ may be assigned to the coincident symmetric terminal CO vibrations of (A) and the Fe₂(cp)₂(CO)₃ residue of (B)

ing a terminal isonitrile. The presence of two bridging CN vibrations in the spectrum of (2a) confirms the presence of isomers (A) and (B).

We believe that the increase in the amounts of isomers (A) and (B) with decreasing alkyl chain length can be explained primarily on steric grounds. Inspection of molecular models shows that, for n=2, the structural form (A) provides the least amount of steric interaction between the Fe₂(cp)₂(CO)₃ moieties (and therefore the least hindrance to H₂C-CH₂ rotation). As the length of the chain increases and this interaction becomes less relevant, isomers (B) and particularly (C) become progressively more abundant because the steric interaction between the cyclopentadienyl ligands and the α -CH₂ of the alkyl chain is minimized.

These complexes exhibit a reactivity similar to that of the $[Fe_2(cp)_2(CO)_3(CNR)]$ derivatives. Thus, protonation of (2a) or (2d) with aqueous HPF₆ yields the nonfluxional bridged iminium complexes (3a) or (3b). Characteristic of these salts are the bridging CN vibration at 1520—1570 cm⁻¹ and the considerably deshielded CN resonance at ca. 315 p.p.m. in the ¹³C spectrum. Reaction of (2a) or (2d) with iodine results in cleavage to yield $[Fe(cp)(CO)_2I]$ and $[Fe(cp)(CO)I]_2\{CN(CH_2)_nNC\}]$ [(4a; n=2) or (4b; n=6)]. This is a reaction characteristic of $[Fe_2(cp)_2(CO)_4]$ and $[Fe_2(cp)_2(CO)_3(CNR)]$ derivatives, but, interestingly, only poor yields of the [Fe(cp)(CO)I(L)] complexes are obtained on cleavage of $[Fe_2(cp)_2(CO)_3L]$ complexes where $L=P(OR)_3$, PR_3 , or $CS.^{8.9}$ The ¹H n.m.r. spectrum of (4a) shows two cyclo-

$$\begin{bmatrix} cp & C & Cp \\ CC & CC \\ CC & CC$$

containing a bridging isonitrile, while the band at ca. 1 945 cm⁻¹ may be assigned to coincident asymmetric terminal CO vibrations of (A) and the Fe₂(cp)₂(CO)₃ residue of (B) containing a bridging isonitrile and the terminal CO vibrations of (C) and the Fe₂(cp)₂(CO)₃ residue of (B) containing a terminal isonitrile. In the bridging CO region, the band at ca. 1 785 cm⁻¹ may be assigned to (A) and the Fe₂(cp)₂(CO)₃ residue of (B) containing a bridging isonitrile, while that at ca. 1 755 cm⁻¹ is due to (C) and the Fe₂(cp)₂(CO)₃ residue of (B) contain-

pentadienyl resonances of equal intensity consistent with the presence of two diastereoisomers (one *meso*, one DL).

Reaction of (1a) or (1d) with either $[Fe_2(CO)_9]$ or $[Fe_3(CO)_{12}]$ yields exclusively the $[\{Fe(CO)_4\}_2\{CN(CH_2)_n-NC\}]$ complexes (5a; n=2) or (5b; n=6) isolated as light yellow solids, but decomposing slowly to $[Fe_3(CO)_{12}]$ in the solid state. The i.r. spectrum is typical, in terms of intensities of the bands, of an axially substituted trigonal-bipyramidal $[Fe(CO)_4L]$ complex, ¹⁰ and the singlet ¹³C carbonyl resonance observed down to -90 °C

is consistent with the low activation energy for intramolecular exchange commonly found in similar five-coordinate species.

It is interesting to compare these results with the reaction of [Fe₂(CO)₉] with Ph₂P(CH₂)₂PPh₂ which yields both the related $[{Fe(CO)_4}_2{Ph_2P(CH_2)_2PPh_2}]$ and the chelated [Fe(CO)₃{Ph₂P(CH₂)₂PPh₂}] in the ratio of 1:1.11 No chelate complexes have been isolated in this work, and other workers have shown 12,13 that the alkyl chain must be at least eight carbons long before chelate behaviour is observed due to the particular requirements of the linear CN-R linkage. We are currently examining syntheses of potentially chelating di-isonitriles, and are also investigating the possibility of the preparation of polymer-supported complexes.

EXPERIMENTAL

The compounds $[Fe_2(CO)_9]$ and $[Fe_3(CO)_{12}]$ were prepared from [Fe(CO)₅]; ¹⁴ all other starting materials were obtained commercially. Reactions involving metal carbonyls were carried out under nitrogen in purified solvents. N.m.r. and i.r. spectra were recorded on IEOL FX-100 and Perkin-Elmer 257 instruments respectively. Carbon-13 n.m.r. spectra were run on ca. 0.06 mol dm^{-3} solutions in the presence of $[Cr(acac)_3]$ (acac = acetylacetonate) under nitrogen.

1,6-Di-isocyanohexane (1d).—Triethylamine (320 cm³) and NN'-diformyl-1,6-diaminohexane (86 g, 0.5 (prepared from 1,6-diaminohexane and ethyl formate 15) were dissolved in CH₂Cl₂ (450 cm³). With magnetic stirring, phosgene (99 g, 1.0 mol) was bubbled into the solution through a wide-bore tube sufficiently rapidly to cause reflux. The reaction was allowed to cool to room temperature and ammonia (40 g) then bubbled into the solution over 1 h. After filtration and removal of solvent, the residue was distilled to yield 1,6-di-isocyanohexane (40 g, 59%), b.p. 100-110 °C (0.01 mmHg).* N.m.r. spectra: ¹H 3.19 [m, f(N-H) = 1.9, f(H-H) = 6.4, α -CH₂], 1.26 (m, β -, γ -CH₂); ¹³C, 155.2 [f(CN) = 6.1, CN], 41.3 [f(CN) = 6.1 Hz, α -CH₂], 28.7 (3-CH₂), 25.4 p.p.m. (γ -CH₂). The following isonitriles were prepared similarly: 1,2-di-isocyanoethane (1a), b.p. 60-65 °C (0.01 mmHg) {n.m.r.: ¹H 3.71 (br s, (CH_2) ; ¹³C, 158.6 [J(CN) = 3.0, CN], 36.3 p.p.m. [J(CN) =5.6 Hz, CH₂]}; 1,3-di-isocyanopropane (1b), b.p. 70-80 °C $(0.01 \text{ mmHg}) \{\text{n.m.r.: } {}^{1}\text{H}, 3.55 \text{ m}, J(\text{NH}) = 1.9, J(\text{HH}) =$ 6.2, α -CH₂], 1.96 [m, J(NH) = 1.8, β -CH₂]; ¹³C, 157.0 $[J(CN) = 5.9, CN], 37.9 [J(CN) = 7.3 Hz, \alpha-CH_2], 27.7$ p.p.m. (β-CH₂)); and 1,4-di-isocyanobutane (1c), b.p. 80-90 °C (0.01 mmHg) {n.m.r.: ${}^{1}H$, 3.41 [f(NH) = 2.0, α -CH₂], 1.78 (m, β -CH₂); ¹³C, 156.0 [J(CN) = 5.7, CN], 40.4 $[J(CN) = 5.9 \text{ Hz}, \alpha\text{-CH}_2], 25.4 \text{ p.p.m.} (\beta\text{-CH}_2)\}.$

CAUTION: Explosions have previously been reported on distillation of isonitriles.2 During phosgene addition, exit gases were passed through sodium hydroxide solution and monitored for phosgene using filter paper soaked in an alcoholic solution containing 10% of a mixture of equal parts of p-dimethylaminobenzaldehyde and colourless diphenylamine.

 $[\{Fe_2(CP)_2(CO)_3\}_2\{CN(CH_2)_6NC\}]$ (2d).—1,6-Di-isocyanohexane (0.68 g) was added to a solution of [Fe₂(cp)₂(CO)₄] (3.54 g) in benzene (80 cm³) and stirred overnight at room temperature. Solvent was removed and the residue was chromatographed on grade IV alumina using CH₂Cl₂ as eluant. After elution of starting material, a second purple band gave the product (2d) as purple crystals after recrystallization from CH₂Cl₂-light petroleum (b.p. 40-60 °C) (1.5 g, 36%). Complexes (2a)—(2c) were prepared similarly.

 $[{Fe_2(CP)_2(CO)_3}_2{CN(H)(CH_2)_6(H)NC}][PF_6]_2$ (3b) —Complex (2d) (400 mg) was suspended in OEt, and enough CH₂Cl₂ added to cause dissolution. Hexafluorophosphoric acid (75% aqueous) was added dropwise until precipitation ceased. The brick red precipitate was collected and purified by reprecipitation using CH2Cl2-light petroleum to yield (3b) (480 mg, 85%). Complex (3a) was prepared in the same way.

 $[\{Fe(cp)(CO)I\}_2\{CN(CH_2)_6NC\}]$ (4b).—Iodine (500 mg) was added to a solution of (2d) (500 mg) in chloroform (15 cm3) and refluxed for 30 min. The excess of iodine was removed by extraction with sodium thiosulphate solution and the solvent was also removed. The residue was chromatographed on alumina grade IV. Elution with CH₂Cl₂ yielded first a brown band of [Fe(cp)(CO)₂I] (300 mg, 42%) and secondly a black-green band of the product (4b) (230 mg, 19%) which was recrystallized from CH₂Cl₂-light petroleum. Complex (4a) was similarly prepared.

 $[\{Fe(CO)_4\}_2\{CN(CH_2)_6NC\}]$ (5b).—1,6-Di-isocyanohexane (1d) (136 mg) was added to an excess of $[Fe_2(CO)_9]$ (1.0 g) in diethyl ether (50 cm³) and the mixture was refluxed for 30 min. The solvent was removed and the residue was chromatographed on alumina grade IV. A light yellow band was eluted with CH₂Cl₂-light petroleum (1:1). The solvent was removed at 0 °C under reduced pressure (0.1 mmHg) to yield (5b) as a light yellow solid (400 mg, 85%). Complex (5a) was prepared in a similar manner. The same products are obtained on reaction of (la) or (ld) with [Fe₃(CO)₁₂] in refluxing benzene.

We thank the S.R.C. for support in the form of a Studentship (to A. J. R.).

[0/926 Received, 16th June, 1980]

REFERENCES

- ¹ K. R. Mann, N. S. Lewis, V. M. Miskowski, D. K. Erwin, G. S. Hammond, and H. B. Gray, J. Am. Chem. Soc., 1977, 99,
- ² P. V. Yaneff and J. Powell, J. Organomet. Chem., 1979, 179,
- ³ J. A. S. Howell and A. J. Rowan, J. Chem. Soc., Dalton Trans., 1980, 503.
- 4 I. Ugi, U. Fetzer, U. Eholzer, H. Knupfer, and K. Offermann,
- Angew. Chem., Int. Ed. Engl., 1965, 4, 472.

 J. W. Emsley, J. Feeney, and L. H. Sutcliffe, 'High Resolution N. M. R. Spectroscopy,' Pergamon, Oxford, 1965, vol. 1,
- p. 415.

 6 R. D. Adams and F. A. Cotton, *Inorg. Chem.*, 1974, **13**, 249.

 7 S. Willis, A. R. Manning, and F. S. Stephens, *J. Chem. Soc.*, Dalton Trans., 1979, 23.
 - R. J. Haines and A. L. de Preez, Inorg. Chem., 1969, 7, 1459. 9 M. H. Quick and R. J. Angelici, J. Organomet. Chem., 1978,
- ¹⁰ F. A. Cotton and R. V. Parish, J. Chem. Soc., 1960, 4401. ¹¹ W. R. Cullen and D. A. Harbourne, Can. J. Chem., 1969, 47,
- 12 R. J. Angelici, M. H. Quick, and G. A. Kraus, Inorg. Chim. Acta Lett., 1980, 44, L137.
- 13 K. Kawakami, M. Okajima, and T. Tanaka, Bull. Chem. Soc.
- Jpn., 1978, 51, 2327.

 14 R. B. King and J. J. Eisch, Organomet. Chem. Synth., 1965,
- 1, 93, 95.

 15 S. L. Vail, C. M. Moran, and H. B. Moore, J. Org. Chem., 1962, 27, 2067.

^{*} Throughout this paper: 1 mmHg = 13.6×9.8 Pa.